Abstract

Life-cycle assessment (LCA) and techno-economic analysis (TEA) were applied to assess the economic feasibility and environmental benefits of utilizing multiple biomass feedstocks for bioenergy products under three different technological pathways with consideration of uncertainties. Three cases were studied for the production of pellets, biomass-based electricity, and pyrolysis bio-oil. A Monte Carlo simulation was used to examine the uncertainties of fossil energy consumption, bioenergy conversion efficiency, stochastic production rate, etc. The cradle-to-gate LCA results showed that pellet production had the lowest greenhouse gas (GHG) emissions, water and fossil fuels consumption (8.29 kg CO2 eq (equivalent), 0.46 kg, and 105.42 MJ, respectively). The conversion process presented a greater environmental impact for all three bioenergy products. When producing 46,929 Mg of pellets, 223,380 MWh of electricity, and 78,000 barrels of pyrolysis oil, the net present values (NPV) indicated that only pellet and electricity production were profitable with NPVs of $1.20 million for pellets, and $5.59 million for biopower. Uncertainty analysis indicated that pellet production showed the highest uncertainty in GHG emission, and bio-oil production had the least uncertainty in GHG emission but had risks producing greater-than-normal amounts of GHG. Biopower production had the highest probability to be a profitable investment with 85.23%.

Highlights

  • Increasing global energy consumption has resulted in the need to further develop bioenergy products using a variety of renewable materials, including forest residues [1,2], and energy crops [3].Biomass is considered an environmentally friendly energy resource through its carbon mitigation function [4], and is a preferred alternative to fossil energy resources to reduce greenhouse gas (GHG)emissions [5]

  • This study focuses on the GHG emissions, and fossil fuel consumption

  • The environmental impacts of the three bioenergy technological pathways are listed in Table 3, and all environmental impacts were calculated with f.u. of 1000 MJ for bioenergy production

Read more

Summary

Introduction

Increasing global energy consumption has resulted in the need to further develop bioenergy products using a variety of renewable materials, including forest residues [1,2], and energy crops [3].Biomass is considered an environmentally friendly energy resource through its carbon mitigation function [4], and is a preferred alternative to fossil energy resources to reduce greenhouse gas (GHG)emissions [5]. Increasing global energy consumption has resulted in the need to further develop bioenergy products using a variety of renewable materials, including forest residues [1,2], and energy crops [3]. Biomass is considered an environmentally friendly energy resource through its carbon mitigation function [4], and is a preferred alternative to fossil energy resources to reduce greenhouse gas (GHG). Biomass could be used to produce bioenergy products in a variety of forms, such as firewood, pellets, electricity, ethanol, and biofuels. Since carbon dioxide is consumed during biomass growth, biomass can mitigate the amount of GHG emission generated during the energy conversion [6]. Energy production from biomass has the advantage of reduced GHG emissions.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.