Abstract

AbstractConductive hydrogels (CHs) have been highlighted in the design of flexible strain sensors and stretchable triboelectric nanogenerators (TENGs) on the basis of their excellent physicochemical properties such as large stretchability and high conductivity. Nevertheless, the incident freezing and drying behaviors of CHs by using water solvent as the dispersion medium limit their application scopes significantly. Herein, an environment tolerant and ultrastretchable organohydrogel is demonstrated by a simple solvent‐replacement strategy, in which the partial water in the as‐synthesized polyacrylamide/montmorillonite/carbon nanotubes hydrogel is replaced with the glycerol, leading to excellent temperature toleration (−60 to 60 °C) and good stability (30 days under normal environment) without sacrificing the stretchability and conductivity. The organohydrogel exhibits an ultrawide strain sensing range (0–4196%) with a high sensitivity of 8.5, enabling effective detection and discrimination of human activities that are gentle or drastic under various conditions. Furthermore, the organohydrogel is assembled in a single‐electrode TENG, which displays excellent energy harvesting ability even under a stretchability of 500% and robustness to directly power wearable electronics in harsh cold conditions. This work inspires a simple route for multifunctional organohydrogel and promises the practical application of flexible and self‐powered wearable devices in extreme environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call