Abstract
Abstract Recently, it has been determined that there are 242 Wilf classes of triples of 4-letter permutation patterns by showing that there are 32 non-singleton Wilf classes. Moreover, the generating function for each triple lying in a non-singleton Wilf class has been explicitly determined. In this paper, toward the goal of enumerating avoiders for the singleton Wilf classes, we obtain the generating function for all but one of the triples containing 1324. (The exceptional triple is conjectured to be intractable.) Our methods are both combinatorial and analytic, including generating trees, recurrence relations, and decompositions by left-right maxima. Sometimes this leads to an algebraic equation for the generating function, sometimes to a functional equation or a multi-index recurrence amenable to the kernel method.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have