Abstract

We study sets of mutually orthogonal Latin rectangles (MOLR), and a natural variation of the concept of self-orthogonal Latin squares which is applicable on larger sets of mutually orthogonal Latin squares and MOLR, namely that each Latin rectangle in a set of MOLR is isotopic to each other rectangle in the set. We call such a set of MOLR homogeneous.In the course of doing this, we perform a complete enumeration of non-isotopic sets of $t$ mutually orthogonal $k\times n$ Latin rectangles for $k\leq n \leq 7$, for all $t < n$. Specifically, we keep track of homogeneous sets of MOLR, as well as sets of MOLR where the autotopism group acts transitively on the rectangles, and we call such sets of MOLR transitive.We build the sets of MOLR row by row, and in this process we also keep track of which of the MOLR are homogeneous and/or transitive in each step of the construction process. We use the prefix stepwise to refer to sets of MOLR with this property.Sets of MOLR are connected to other discrete objects, notably finite geometries and certain regular graphs. Here we observe that all projective planes of order at most 9 except the Hughes plane can be constructed from a stepwise transitive MOLR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.