Abstract

A computer simulation is used to investigate hole formation in a model membrane. The model parameters are the stress applied to the membrane, and the edge energy per unit length along the hole boundary (edge tension). Even at zero stress, the membrane has an entropically driven instability against hole formation. Within the model, the minimum edge tension required for the stability of a typical biological membrane is in the region of 1 x 10(-11) J/m, which is similar to the edge tension obtained in many measurements of biomembranes. At the zero-stress instability threshold, the hole shape is the same as a self-avoiding ring, but under compression, the hole shape assumes a branched polymer form. In the presence of large holes at zero stress, the membrane itself behaves like a branched polymer. The boundaries of the phase diagram for membrane stability are obtained, and general features of the rate of membrane rupture under stress are investigated. A model in which the entropy of hole formation is proportional to the hole perimeter is used to interpret the simulation results at small stress near the instability threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.