Abstract

Within the framework of paraxial approximation it is shown that in an anisotropic plasma with sloshing ions confined an open-ended system a magnetic hole is formed near the turning point of the sloshing ions above the threshold of the mirror instability. The magnetic field experiences a jump at the hole boundary from the side of the magnetic mirror. For a small excess over the mirror instability threshold, the surface of the discontinuity has the shape of a truncated paraboloid, and the magnitude of the magnetic field jump at the system axis is proportional to the radius of the hole and gradually decreases to zero away of the axis. It is argued that disappearance of the magnetic hole because of the widening of the sloshing ions angular spread in the course of the neutral beam injection results in abrupt anticorrelated changes of the diamagnetic signals measured near the turning point of the sloshing ions and near the midplane of the gas-dynamic trap.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call