Abstract
Symmetries and wave functions An important difference between the classical and quantum perspectives is their different criteria of distinguishability. Identical particles are classically distinguishable when separated in phase space. On the other hand, identical particles are always quantum mechanically indistinguishable for the purpose of counting distinct microstates. But these concepts and these distinctions do not tell the whole story of how we count the microstates and determine the multiplicity of a quantized system. There are actually two different ways of counting the accessible microstates of a quantized system of identical, and so indistinguishable, particles. While these two ways were discovered in the years 1924–1926 independently of Erwin Schrodinger’s (1887–1961) invention of wave mechanics in 1926, their most convincing explanation is in terms of particle wave functions. The following two paragraphs may be helpful to those familiar with the basic features of wave mechanics. A system of identical particles has, as one might expect, a probability density that is symmetric under particle exchange, that is, the probability density is invariant under the exchange of two identical particles. But here wave mechanics surprises the classical physicist. A system wave function may either keep the same sign or change signs under particle exchange. In particular, a system wave function may be either symmetric or antisymmetric under particle exchange.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.