Abstract
We determine the exact asymptotic order of the entropy numbers of compact embeddings \(B^{s_1}_{p_1 , q_1}(\mathbb{R}^{d},w_1)\hookrightarrow B^{s_2}_{p_2 , q_2}(\mathbb{R}^{d},w_2)\) of weighted Besov spaces in the case where the ratio of the weights w(x) = w 1(x)/w 2(x) is of logarithmic type. This complements the known results for weights of polynomial type. The estimates are given in terms of the number 1/p = 1/p 1 − 1/p 2 and the function w(x). We find an interesting new effect: if the growth rate at infinity of w(x) is below a certain critical bound, then the entropy numbers depend only on w(x) and no longer on the parameters of the two Besov spaces. All results remain valid for Triebel–Lizorkin spaces as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.