Abstract
We study several techniques whichare well known in the case of Besov and TriebelLizorkin spaces and extend them to spaces with dominating mixed smoothness. We use the ideas of Triebel to prove three important decomposition theorems. We deal withsocalled atomic, subatomic and wavelet decompositions. All these theorems have much in common. fRoughly speaking, they say that a function belongs to some function space if, and only if, it can be decomposed into the sum of products of coefficients and corresponding building blocks, where the coefficients belong to an appropriate sequence space. These decomposition theorems estabilisha veryusefulconnection between function and sequence spaces. We use them in the study of the decay of entropy numbers of compact embeddings between two function spaces of dominating mixed smoothness reducingthis problem to the same question on the sequence space level. The considered scales cover many important specific spaces (Sobolev, Zygmund, Besov) and we get generalisations of respective assertions of Belinsky, Dinh Dung and Temlyakov.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.