Abstract

Numerical simulations of geostrophic turbulence above topography are used to compare (a) nonlinear generation of system entropy, S, (b) selective damping of enstrophy and (c) development of vorticity–topography correlation. In the damped cases, S initially increases, approaching a quasi-equilibrium (maximum S subject to the instantaneous, though decaying, energy and enstrophy). When strongly scale-selective damping is applied, onset of the vorticity–topography correlation follows the timescales for enstrophy decay. During the period of decay, it is shown that nonlinear interaction continues to generate S, offsetting in part the loss of S to explicit damping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call