Abstract
For the inertial Qian–Sheng model of nematic liquid crystals in the [Formula: see text]-tensor framework, we illustrate the roles played by the entropy inequality and energy dissipation in the well-posedness of smooth solutions when we employ energy method. We first derive the coefficients requirements from the entropy inequality, and point out the entropy inequality is insufficient to guarantee energy dissipation. We then introduce a novel Condition (H) which ensures the energy dissipation. We prove that when both the entropy inequality and Condition (H) are obeyed, the local in time smooth solutions exist for large initial data. Otherwise, we can only obtain small data local solutions. Furthermore, to extend the solutions globally in time and obtain the decay of solutions, we require at least one of the two conditions: entropy inequality, or [Formula: see text], which significantly enlarge the range of the coefficients in previous works.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.