Abstract
We consider a non-local free energy functional, modelling a competition between entropy and pairwise interactions reminiscent of the second order virial expansion, with applications to nematic liquid crystals as a particular case. We build on previous work on understanding the behaviour of such models within the large-domain limit, where minimisers converge to minimisers of a quadratic elastic energy with manifold-valued constraint, analogous to harmonic maps. We extend this work to establish Hölder bounds for (almost-)minimisers on bounded domains, and demonstrate stronger convergence of (almost)-minimisers away from the singular set of the limit solution. The proof techniques bear analogy with recent work of singularly perturbed energy functionals, in particular in the context of the Ginzburg–Landau and Landau–de Gennes models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.