Abstract

Development of Micro-electro-mechanical systems (MEMS) in the recent years has motivated and necessitated the study of flows in micro-scale geometries such as microchannel. Thermal management in ultra-densely packed electronic devices is highly essential to increase the reliability of the component without compromising packaging. The present study provides an experimental and numerical investigation on laminar forced convection in parallel microchannel heat sink accompanied with integrated Aluminium bulk heat spreader and ultrafine TiO2 nanoparticle based nanofluid for different wt. % ranging from 0.1-0.35 under different power ratings. Numerical study is performed to understand the flow hydrodynamics in microchannel to investigate the temperature distribution in bulk heat spreader with increased flow rates by implementing the thermo-physical properties. Furthermore, a study on Exergy and entropy generation for different fluids is also discussed. The experimental studies reveal that parallel microchannel increases the effectiveness of integrated cooling with a marginal temperature deviation between the heat sink and Aluminium bulk for a distance of 1.5 mm. Implementation of TiO2 nanofluid registered as a better working fluid than the pure fluid for all the experimental settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.