Abstract

This article aims to analyze flow of Jeffrey nanofluid. Entropy generation with Joule heating, activation energy, viscous dissipation and nonlinear thermal radiation is discussed. Brownian motion and thermophoresis impacts are also studied. Stretching sheet of variable thickness is considered. Homotopic convergent solutions are developed by using OHAM. Governing nonlinear equations are developed. Effects of the influential variables are addressed. Higher Deborah number have reverse effect on temperature and concentration when compared with velocity. Larger Deborah number decays fluid velocity while temperature and concentration are enhanced. Temperature and concentration of fluid are enhanced for thermophoresis parameter. Concentration and temperature for Brownian motion have reverse effect. Entropy generation enhances for larger Deborah, Hartmann and Brinkman numbers while Bejan number has opposite effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call