Abstract
We study the viscous nanofluid flow over a non-isothermal wedge with thermal radiation. The entropy due to irreversible processes in the system may degrade the performance of the thermodynamic system. Studying entropy generation in the flow over a porous wedge gives insights into how the system is affected by irreversible processes, and indicate which thermo–physical parameters contribute most to entropy generation in the system. The bivariate spectral quasi-linearization method is used to find the convergent solutions of the model equations. The impact of significant parameters such as the Hartmann number, thermophoresis and Brownian motion parameter on the fluid properties is evaluated and discussed. The Nusselt number, skin friction coefficients and Sherwood number are determined. An analysis of the rate of entropy generation in the flow for various parameters is presented, and among other results, we found that the Reynolds number and thermal radiation contribute significantly to entropy generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.