Abstract

This paper proposes a feasible solution to diminish conduction losses in active magnetic regenerators. Higher performances of these machines are linked to a lower thermal conductivity of the Magneto-Caloric Material (MCM) in the streamwise direction. The concept presented here involves the insertion of insulator layers along the length of a parallel-plate magnetic regenerator in order to reduce the heat conduction within the MCM. This idea is investigated by means of a 1D numerical model. This model solves not only the energy equations for the fluid and solid domains but also the magnetic circuit that conforms the experimental setup of reference. In conclusion, the addition of insulator layers within the MCM increases the temperature span, cooling load, and coefficient of performance by a combination of lower heat conduction losses and an increment of the global Magneto-Caloric Effect. The generated entropy by solid conduction, fluid convection, and conduction and viscous losses are calculated to help understand the implications of introducing insulator layers in magnetic regenerators. Finally, the optimal number of insulator layers is studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.