Abstract

The scrutinization of entropy optimization in the various flow mechanisms of non-Newtonian fluids with heat transfer has been incredibly enhanced. Through the investigation of irreversibility sources in the steady flow of a non-Newtonian Willaimson fluid, an analysis of entropy generation is carried out in this current work. The current study has an essential aspect of investigating the heat transfer mechanism with flow phenomenon by considering convective-radiative boundary conditions. A horizontal MHD channel is assumed with two parallel plates to develop a mathematical model for the flow phenomenon by considering the variable viscosity of the fluid. The contribution of physical impacts of thermal radiation, Joule heating, and viscous dissipation is interpolated in the constitutive energy equation. The complete flow of the current analysis is established in the form of ordinary differential equations which further take the form of the dimensionless system through the contribution of the similarity variables. A graphical scrutinization of the physical features of the flow phenomenon in relation to the pertinent parameters is proposed. This study reveals that the higher magnitude of radiation parameter and Brinkman number dominates the system's entropy. Moreover, the temperature distribution experiences an increasing mechanism with improved conduction-radiation parameter at the lower plate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.