Abstract

PurposeThis paper aims to examine the squeezing flow of hybrid nanofluid within the two parallel disks. The 50:50% water–ethylene glycol mixture is used as a base fluid to prepare Ag–Fe_3O_4 hybrid nanofluid. Entropy generation analysis is examined by using the second law of thermodynamics, and Darcy’s modal involves estimating the behavior of a porous medium. The influences of Viscous dissipation, Joule heating and thermal radiation in modeling are further exerted into concern.Design/methodology/approachFor converting partial differential systems to ordinary systems, a transformation technique is used. For the validation part, the numerical solution is computed by embracing a fourth-order exactness program (bvp4c) and compared with the analytical solution added by the homotopy analysis method (HAM). Graphical decisions expose the values of miscellaneous-arising parameters on the velocity, temperature and local-Nusselt numbers.FindingsHybrid nanofluid gives significant enhancement in the rate of heat transfer compared with nanofluid. The outcomes indicate that the average Nusselt number and entropy generation are increasing functions of the magnetic field, porosity and Brinkman number. When the thermal radiation rises, the average Nusselt number diminishes and the entropy generation advances. Furthermore, combining silver and magnetite nanoparticles into the water–ethylene glycol base fluid significantly enhances entropy generation performance.Originality/valueEntropy generation analysis of the magneto-hydrodynamics (MHD) fluid squeezed between two parallel disks by considering Joule heating, viscous dissipation and thermal radiation for different nanoparticles is addressed. Furthermore, an appropriate agreement is obtained in comparing the numerical results with previously published and analytical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.