Abstract

Entropy engineering in thermoelectric materials involves a deliberate manipulation of entropy-related effects to boost performance. It revolves around designing materials to capitalize on entropy-driven changes, breaking conventional trade-offs between properties like electrical and thermal conductivity for improved efficiency. Entropy engineering fosters higher crystal symmetry, altering the Seebeck coefficient by augmenting degenerate valleys in the band structure. The introduction of significant mixing entropy mitigates strain energy, enhancing structural stability. Conversely, severe lattice distortion, atomic mass fluctuations, lattice anharmonicity, multiscale microstructures, and point defects lead to potent scattering of phonons, which suppresses thermal transport properties. This study comprehensively explores the effectiveness of entropy engineering in diverse compounds, aligning with the status and challenges in this field. These insights will guide researchers in refining material design and properties, advancing high-performance thermoelectric materials and devices to revolutionize energy conversion and stimulate sustainable technological advancements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.