Abstract

Small alcohol confinement within narrow carbon nanotubes has been extensively and systematically studied via rigorous free-energy calculations. Employing molecular dynamics simulations, thermodynamic integration and thermodynamic cycling, the loading process of methanol and ethanol from aqueous solution into (6,6), (7,7) and (8,8) single-walled carbon nanotubes was computed and decomposed into its entropic and energetic terms. For all tubes and alcohols, loading is favoured from infinite dilution in water; for the same alcohol, wider tubes allow for the formation of a collective dipole which is cooperative in terms of electrostatics and reduce the rotational freedom of the loaded particles; narrow tubes only permit the formation of dipole-dipole dimers instead, with a (rotational) entropic gain that compensates for the loss of long-range dipole-dipole interactions. The latter renders deeper loading chemical potentials for narrower tubes when partitioning small alcohols from aqueous solution and it is a clear example of an entropy-energy compensation phenomenon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.