Abstract

Thermodynamic modeling of natural processes involving deep aqueous fluids requires the knowledge of the values of chemical potentials (the Gibbs energy) of aqueous species. An accurate prediction of thermodynamic properties at high T and P is a strong challenge. It is shown that geochemical models, including the well-known HKF-model, cannot be recommended for an indiscriminate use at supercritical temperatures to predict chemical potentials of nonelectrolytes at infinite dilution in water. Nevertheless, sufficiently accurate predictions of ϕ2∞ (the fugacity coefficients at infinite dilution in water) of aqueous nonelectrolytes up to 2000K and water densities up to 1500kgm−3, i.e. pressure up to 10–12GPa, can be made relying on known theoretical relations valid at various parts of the phase diagram of water. In essence, the method, proposed in this work, consists in the interpolation of properties between two known limits: the first one, at low water densities, is defined by the values of the second virial coefficients for water-solute interactions, and the second, at high water densities – by predictions of the theory of a mixture of hard spheres. The interpolation at moderate temperatures (700–1300K) and water densities (500–900kgm−3) is simplified by sufficiently accurate predictions of properties using a semiempirical variant of a corresponding-states principle. Presented examples of the prediction of fugacity coefficients of “gases” at infinite dilution in water and of an aqueous solubility of corundum over very wide ranges of water densities/pressures demonstrate the potential and generality of the proposed methods of evaluating the thermodynamic properties of aqueous neutral compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call