Abstract
We consider a class $ \mathcal{F} $ of Markov multi-maps on the unit interval. Any multi-map gives rise to a space of trajectories, which is a closed, shift-invariant subset of $ [0, 1]^{\mathbb{Z}_+} $. For a multi-map in $ \mathcal{F} $, we show that the space of trajectories is (Borel) entropy conjugate to an associated shift of finite type. Additionally, we characterize the set of numbers that can be obtained as the topological entropy of a multi-map in $ \mathcal{F} $.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.