Abstract

Entropy changes due to magnetostructrual phase transition in Gd5SixGe4−x intermetallics have been studied based on a systematic analysis of experiment data and mean-field theory calculations. It is found that the magnetic and lattice entropy changes have the same sign. Further analysis indicates that the main entropy change (∼60%–∼80%) comes from the field-induced change of the magnetic order, while the rest arise from the entropy difference of the two crystallographic modifications joined by the structural transition, probably due to the variation of the lattice vibration mode. The present work reveals the importance of lattice entropy for a system experiencing a first-order transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.