Abstract

The exchange striction model is invoked to derive an expression for the entropy of ferromagnetic materials undergoing first- and second-order magnetic phase transitions. The magnetocaloric and barocaloric effects are calculated for the ferromagnet La(Fe0.88Si0.12)13 undergoing a first-order phase transition. The calculated results are in fair agreement with experimental data. The ferromagnet La(Fe0.88Si0.12)13 is used as an example to predict the changes in magnetic and magnetocaloric properties associated with gradual increase in the magnetoelastic coupling constant (i.e., with passage from first- to second-order magnetic transition region). It is shown that stronger magnetoelastic coupling leads to stronger magnetocaloric effects and changes their dependence on magnetic field and pressure. Expressions are obtained for the maximum field- and pressure-induced entropy changes. An analysis is presented of the mechanism responsible for the increase in magnetocaloric and barocaloric effects associated with change from the second- to first-order magnetic phase transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.