Abstract

Momentum and heat transfer rates, as well as entropy generation have been numerically investigated for fully developed, forced convection, laminar flow in a micro-pipe. Compressible and variable fluid property continuity, Navier-Stokes and energy equations are solved for various Reynolds number, constant heat flux and surface roughness cases; entropy generation is discussed in conjunction with the velocity and temperature profiles, boundary layer parameters and heat transfer-frictional characteristics of the pipe flow. Simulations concentrated on the impact of wall roughness based viscous dissipation on the heat transfer behaviour and so occurring heating/cooling activity and the resulting overall and radial entropy generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call