Abstract
In this Note, we study the system of isentropic Euler equations for compressible fluids, with a general equation of state. We establish the existence of the fundamental kernel that generates the family of weak entropies, and study its singularities. The kernel is the solution of an equation of Euler-Poisson-Darboux type, and its partial derivative with respect to the density variable tends to a Dirac measure as the density approaches zero. We prove a new reduction theorem for the Young measures associated with the compressible Euler system. From these results, we deduce the existence, compactness, and asymptotic decay of measurable and bounded entropy solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comptes Rendus de l'Academie des Sciences Series I Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.