Abstract
We propose GLGM (gray-level & gradient-magnitude) histogram as a novel image histogram for thresholding. GLGM histogram explicitly captures the gray level occurrence probability and spatial distribution property simultaneously. Different from previous histograms that also consider the spatial information, GLGM histogram employs the Fibonacci quantized gradient magnitude to characterize spatial information effectively. In this paper, it is applied to entropic image thresholding. For threshold selection, we define a new spatial property weighting function to depict the roles played by different kinds of pixels. The experiments demonstrate the effectiveness and robustness of our thresholding approach, containing wide range comparisons with the well established thresholding methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.