Abstract
In this paper, we use graph theoretic properties of generalized Johnson graphs to compute the entries of the group inverse of Laplacian matrices for generalized Johnson graphs. We then use these entries to compute the Zenger function for the group inverse of Laplacian matrices of generalized Johnson graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.