Abstract
This paper improves on generalized properties of a family of iterative methods to compute the approximate inverses of square matrices originally proposed in [1]. And while the methods of [1] can be used to compute the inner inverses of any matrix, it has not been proved that these sequences converge (in norm) to a fixed inner inverse of the matrix. In this paper, it is proved that the sequences indeed are convergent to a fixed inner inverse of the matrix which is the Moore–Penrose inverse of the matrix. The convergence proof of these sequences is given by fundamental matrix calculus, and numerical experiments show that the third-order iterations are as good as the second-order iterations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.