Abstract

Plant metal uptake can occur through both soil-root and atmospheric transfer from leaves. The latter holds potential implications for development of biofiltration systems. To explore this potential, it is crucial to understand entrapment capacity and metal sources within plants. As ferns absorb materials from atmosphere, this study focuses on two abundant fern species growing in densely populated and highly polluted regions of Eastern India. Gravimetric quantification, elemental concentration and Pb isotopic analyses were performed by segregating the ferns into distinct components: foliage dusts (loose dust (LD) and wax-bound dust (WD)) and plant tissue (leaves and roots). To understand metal sources, the study analyzes soil, and atmospheric particulates (PM10 and dust fall (DF)). Results indicate that, while LDs have soil dust influence, wax entraps atmospheric particulates and translocates them inside the leaves. Furthermore, roots demonstrate dissimilar isotopic ratios from soil, while displaying close association with atmospheric particulates. Isotopic composition and subsequent mixing model reveal dominant contribution from DF in leaves (53–73%) and roots (33–86%). Apart from DF, leaf Pb is sourced from PM10 (21–38%) with minimal contribution from soil (6–10%). Conversely, in addition to dominance from DF, roots source Pb primarily from soil (12–62%) with a meagre 2–8% contribution from PM10.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.