Abstract

The gas–liquid separation equipments are aimed to be designed for maximum efficiency of phase separation. In order to maximize their capacity the flow rates are required to be optimized for the capital cost of equipment. This leads to the situation where the gas phase leaves the separation interface with high velocities and carry liquid phase along with it in the form of droplets reducing the equipment efficiency. This is known as entrainment or carryover. Depending on the nature of the separation interface i.e., turbulence intensity, bubble dynamics, the size and velocity distribution of liquid fragments, droplets at the separation interface varies. This is the main source of empiricism involved in the analysis of such equipments. The mechanics of motion of the dispersed liquid phase in bulk of gas is relatively well studied. In the present paper the various experimental, analytical and numerical investigations carried out to address the issues of entrainment/carryover are carefully analyzed. Further, a critical review has been presented for bringing out a coherent theme and a current status of the subject under reference.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call