Abstract
We use the phase field method to track the gas–liquid interface based on the gas–liquid two-phase flow in the pool boiling process, and study the bubble nucleation, growth, deformation, departure and other dynamic behaviors on the heating surface under microgravity. By simulating the correlation between liquid undercooling and bubble dynamics, we find that the bubble growth time increases with the increase of liquid undercooling, but the effect of liquid undercooling on bubble height is not significant. Meanwhile, the gas–liquid–solid three-phase contact angle and the gravity level will also have an effect on the bubble growth time and bubble height. With the increase of the contact angle, the bubble growth time and bubble height when the bubble departs also increase. While the effect of gravity level is on the contrary, the smaller the gravity level is, the larger the bubble height and bubble growth time when the bubble separates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.