Abstract
Video stabilization is the process of eliminating unwanted camera movements and shaking in a recorded video. Recently, learning-based video stabilization methods have become very popular. Supervised learning-based approaches need labeled data. For the video stabilization problem, recording both stable and unstable versions of the same video is quite troublesome and requires special hardware. In order to overcome this situation, learning-based interpolation methods that do not need such data have been proposed. In this paper, we review recent learning-based interpolation methods for video stabilization and discuss the shortcomings and potential improvements of them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.