Abstract

An open question in the field of relativistic quantum information is how parties in arbitrary motion may distribute and store quantum entanglement. We propose a scheme for storing quantum information in the field modes of cavities moving in flat space-time and analyze it in a quantum field theoretical framework. In contrast with previous work that found entanglement degradation between observers moving with uniform acceleration, we find the quantum information in such systems is protected. We further discuss a method for establishing the entanglement in the first place and show that in principle it is always possible to produce maximally entangled states between the cavities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call