Abstract
We study the entanglement evolution in a dipolar-coupled spin system irradiated by a radiofrequency (RF) field in quasi-equilibrium state characterized by a two-temperature density matrix. Process of the establishment of equilibrium is in the equalization of these temperatures. The method of the nonequilibrium statistical operator in a rotating frame is used to describe the evolution of the spin system. It is shown that the equilibrium establishment has nonexponential character, and the time needed for this establishment depends strongly on the RF field strength. Particularly, the weak RF irradiation increases the lifetime of entanglement. Temporal and temperature dependencies of the concurrence of spin pairs are obtained and discussed. It is shown that application of RF field increases the time of the equilibrium establishment (up to order of 1,000 times) and lifetime of the existence of entangled states (up to order of 1,000 times). Thus, with the help of RF irradiation, we can govern the relaxation process and control entanglement in the system. The obtained results can be used for analysis of more complex spin systems because dipole---dipole interaction decreases proportionally to inverse third power of the distance between the spins, and influence of far way spins can be negligible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.