Abstract

Rydberg atoms, with large principal quantum number, exhibit certain properties, such as long lifetimes and strong interactions with fields and other atoms, which have been extensively investigated recently. One of the properties is the electromagnetically induced transparency (EIT) of Rydberg ladder system, which can be used to measure the radio frequency (RF) field with high sensitivity. In this paper, we investigate the quantum coherent effect of cesium Rydberg atom in a three-level ladder system involving the ground state (6S1/2), the excited state (6P3/2) and 49S1/2 Rydberg state in room temperature vapor cell. The probe laser (852 nm) drives the transition of 6S1/2(F=4)→6P3/2(F'=5), while the coupling laser (510 nm) couples the Rydberg transition of 6P3/2 (F'=5)→nS1/2. A typical electromagnetically induced transparency spectrum is obtained when the weak probe laser is scanned through the transition of 6S1/2(F=4)→6P3/2(F'=5) and the coupling laser tuning to Rydberg transition. The two-photon RF spectra are observed when the RF field with a frequency of ~16.9 GHz couples the Rydberg transition of 49S1/2→47D3/2, where the EIT signal is split into two EIT peaks due to the interaction between the RF field and Rydberg atoms. The dependences of EIT splitting on the power of RF field are investigated. The results show that the EIT splitting increases with the power of RF field, which can inversely be used to measure the RF field with a higher spatial resolution in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call