Abstract

In the black-box model, problems constrained by a `promise' are the only ones that admit a quantum exponential speedup over the best classical algorithm in terms of query complexity. The most prominent example of this is the Deutsch-Jozsa algorithm. More recently, Wim van Dam put forward an algorithm for unstructured problems (i.e., those without a promise). We consider the Deutsch-Jozsa algorithm with a less restrictive (or `broken') promise and study the transition to an unstructured problem. We compare this to the success of van Dam's algorithm. These are both compared with a standard classical sampling algorithm. The Deutsch-Jozsa algorithm remains good as the problem initially becomes less structured, but the van Dam algorithm can be adapted so as to become superior to the Deutsch-Jozsa algorithm as the promise is weakened.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.