Abstract
An investigation is reported of the collective effects and the dynamics of atom–atom entanglement in a system of two distant two-level atoms which are coupled via an optical element. In the system under consideration, the two atoms, which are trapped in the foci of a lens, are coupled to a common environment being in the vacuum state and they emit photons spontaneously. A fraction of the emitted photons from each atom is thus focused on the position of the other atom. The presence of optical element between two distant atoms leads to the occurrence of delayed collective effects, such as delayed dipole–dipole interaction and delayed collective spontaneous emission, which play the crucial role in the dynamical behaviour of the entanglement. We discuss the phenomena of entanglement sudden birth, entanglement sudden death, and revival of entanglement for both cases of initial one-photon and initial two-photon unentangled atomic states. We show that the evolution of the entanglement is sensitive not only to the interatomic distance but also to the initial state of the system as well as to the properties of the optical element.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have