Abstract
We investigate the relationship between the entanglement and subsystem Hamiltonians in the perturbative regime of strong coupling between subsystems. One of the two conditions that guarantees the proportionality between these Hamiltonians obtained by using the nondegenerate perturbation theory within the first order is that the unperturbed ground state has a trivial entanglement Hamiltonian. Furthermore, we study the entanglement Hamiltonian of the Heisenberg ladders in a time-dependent magnetic field using the degenerate perturbation theory, where couplings between legs are considered as a perturbation. In this case, when the ground state is twofold degenerate, and the entanglement Hamiltonian is proportional to the Hamiltonian of a chain within first-order perturbation theory, even then also the unperturbed ground state has a nontrivial entanglement spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.