Abstract

Non-Abelian anyons can emerge as fractionalized excitations in two-dimensional systems with topological order. One important example is the Moore–Read fractional quantum Hall state. Its quasihole states are zero-energy eigenstates of a parent Hamiltonian, but its quasiparticle states are not. Both of them can be modeled on an equal footing using the bipartite composite fermion method. We study the entanglement spectrum of the cases with two or four non-Abelian anyons. The counting of levels in the entanglement spectrum can be understood using the edge theory of the Moore–Read state, which reflects the topological order of the system. It is shown that the fusion results of two non-Abelian anyons is determined by their distributions in the bipartite construction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call