Abstract

We study the entanglement spectrum of topological systems hosting non-Abelian anyons. Akin to energy levels of a Hamiltonian, the entanglement spectrum is composed of symmetry multiplets. We find that the ratio between different eigenvalues within one multiplet is universal and is determined by the anyonic quantum dimensions. This result is a consequence of the conservation of the total topological charge. For systems with non-Abelian topological order, this generalizes known degeneracies of the entanglement spectrum, which are hallmarks of topological states. Experimental detection of these entanglement spectrum signatures may become possible in Majorana wires using multicopy schemes, allowing the measurement of quantum entanglement and its symmetry resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.