Abstract

We relate the reduced density matrices of quadratic fermionic and bosonic models to their Green's function matrices in a unified way and calculate the scaling of the entanglement entropy of finite systems in an infinite universe exactly. For critical fermionic two-dimensional (2D) systems at $T=0$, two regimes of scaling are identified: generically, we find a logarithmic correction to the area law with a prefactor dependence on the chemical potential that confirms earlier predictions based on the Widom conjecture. If, however, the Fermi surface of the critical system is zero-dimensional, then we find an area law with a sublogarithmic correction. For a critical bosonic 2D array of coupled oscillators at $T=0$, our results show that the entanglement entropy follows the area law without corrections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call