Abstract

The entanglement entropy of a noninteracting fermionic system confined to a two-dimensional honeycomb lattice on a torus is calculated. We find that the entanglement entropy can characterize Lifshitz phase transitions without a local order parameter. In the noncritical phase and critical phase with a nodal Fermi surface, the entanglement entropy satisfies an area law. The leading subarea term is a constant in the gapped phase rather than a logarithmic additive term in the gapless regime. The tuning of chemical potential allows for a nonzero Fermi surface, whose variation along a particular direction determines a logarithmic violation of the area law. We perform the scaling of entanglement entropy numerically and find agreement between the analytic and numerical results. Furthermore, we clearly show that an entanglement spectrum is equivalent to an edge spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.