Abstract
We study entanglement creation between two independent XX chains, which are repeatedly coupled locally to spin-1/2 Bell pairs. We show analytically that in the steady state the entanglement of the Bell pairs is perfectly transferred to the chains, generating large-scale interchain pair correlations. However, before the steady state is reached, within a growing causal region around the interacting locus the chains are found in a current driven nonquilibrium steady state (NESS). In the NESS, the chains cross entanglement decays exponentially with respect to the distance to the boundary sites with a typical length scale which is inversely proportional to the driving current.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.