Abstract
We study theoretically entanglement and operator growth in a spin system coupled to an environment, which is modeled with classical dephasing noise. Using exact numerical simulations we show that the entanglement growth and its fluctuations are described by the Kardar-Parisi-Zhang equation. Moreover, we find that the wavefront in the out-of-time ordered correlator (OTOC), which is a measure for the operator growth, propagates linearly with the butterfly velocity and broadens diffusively with a diffusion constant that is larger than the one of spin transport. The obtained entanglement velocity is smaller than the butterfly velocity for finite noise strength, yet both of them are strongly suppressed by the noise. We calculate perturbatively how the effective time scales depend on the noise strength, both for uncorrelated Markovian and for correlated non-Markovian noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.