Abstract

Quenched randomness can have a dramatic effect on the dynamics of isolated 1D quantum many-body systems, even for systems that thermalize. This is because transport, entanglement, and operator spreading can be hindered by `Griffiths' rare regions which locally resemble the many-body-localized phase and thus act as weak links. We propose coarse-grained models for entanglement growth and for the spreading of quantum operators in the presence of such weak links. We also examine entanglement growth across a single weak link numerically. We show that these weak links have a stronger effect on entanglement growth than previously assumed: entanglement growth is sub-ballistic whenever such weak links have a power-law probability distribution at low couplings, i.e. throughout the entire thermal Griffiths phase. We argue that the probability distribution of the entanglement entropy across a cut can be understood from a simple picture in terms of a classical surface growth model. Surprisingly, the four length scales associated with (i) production of entanglement, (ii) spreading of conserved quantities, (iii) spreading of operators, and (iv) the width of the `front' of a spreading operator, are characterized by dynamical exponents that in general are all distinct. Our numerical analysis of entanglement growth between weakly coupled systems may be of independent interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.