Abstract
We investigate the geometry of the four qubit systems by means of algebraic geometry and invariant theory, which allows us to interpret certain entangled states as algebraic varieties. More precisely we describe the nullcone, i.e., the set of states annihilated by all invariant polynomials, and also the so-called third secant variety, which can be interpreted as the generalization of GHZ-states for more than three qubits. All our geometric descriptions go along with algorithms which allow us to identify any given state in the nullcone or in the third secant variety as a point of one of the 47 varieties described in the paper. These 47 varieties correspond to 47 non-equivalent entanglement patterns, which reduce to 15 different classes if we allow permutations of the qubits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.