Abstract

This paper is concerned with linear quantum networks of $N$ nondegenerate optical parametric amplifiers (NOPAs), with $N$ up to 6, which are interconnected in a coherent feedback chain. Each network connects two communicating parties (Alice and Bob) over two transmission channels. In previous work we have shown that a dual-NOPA coherent feedback network generates better Einstein-Podolsky-Rosen (EPR) entanglement (i.e., more two-mode squeezing) between its two outgoing Gaussian fields than a single NOPA, when the same total pump power is consumed and the systems undergo the same transmission losses over the same distance. This paper aims to analyze stability, EPR entanglement between two outgoing fields of interest, and bipartite entanglement of two-mode Gaussian states of cavity modes of the $N$-NOPA networks under the effect of transmission and amplification losses, as well as the effect of time delays on the outgoing fields. It is numerically shown that, in the absence of losses and delays, the network with more NOPAs in the chain requires less total pump power to generate the same degree of EPR entanglement. Moreover, we report on the internal entanglement synchronization that occurs in the steady state between certain pairs of Gaussian oscillator modes inside the NOPA cavities of the networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call