Abstract

We discuss the generation and the long-time persistence of entanglement in open two-qubit systems whose reduced dissipative dynamics is not a priori engineered but is instead subjected to filtering and Markovian feedback. In particular, we analytically study (1) whether the latter operations may enhance the environment capability of generating entanglement at short times and (2) whether the generated entanglement survives in the long-time regime. We show that, in the case of particularly symmetric Gorini–Kossakowski–Sudarshan–Lindblad it is possible to fully control the convex set of stationary states of the two-qubit reduced dynamics, therefore the asymptotic behaviour of any initial two-qubit state. We then study the impact of a suitable class of feed-back operations on the considered dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.