Abstract

ABSTRACTA protocol of measuring interferometric visibility function using imperfectly entangled states shared between remote telescopes is proposed. We demonstrate how quantum entanglement can be utilized to increase the baseline size of telescopic arrays thereby providing substantial enhancement to the resolution of direct-detection interferometric measurements. We demonstrate, through a comprehensive analysis, how errors in visibility measurements and in the intensity distribution of a distant object show dependence on the entanglement degree of the shared quantum resource. We analyse the feasibility of the protocol using currently available technology and identify the nature of sources that can benefit most from it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.